Algebraic multigrid methods for the solution of the Navier-Stokes equations in complicated geometries
نویسنده
چکیده
The application of standard multigrid methods for the solution of the Navier-Stokes equations in complicated domains causes problems in two ways. First, coarsening is not possible to full extent since the geometry must be resolved by the coarsest grid used, and second, for semiimplicit time stepping schemes, robustness of the convergence rates is usually not obtained for the arising convection-diffusion problems, especially for higher Reynolds numbers. We show that both problems can be overcome by the use of algebraic multigrid (AMG) which we apply for the solution of the pressure and momentum equations in explicit and semiimplicit time-stepping schemes. We consider the convergence rates of AMG for several model problems and we demonstrate the robustness of the proposed scheme.
منابع مشابه
Development and Application of Parallel Agglomerated Multigrid Methods for Complex Geometries
We report further progress in the development of agglomerated multigrid techniques for fully unstructured grids in three dimensions. Following the previous studies that identified key elements to grid-independent multigrid convergence for a model equation, and that demonstrated impressive speed-up in single-processor computations for a model diffusion equation, inviscid flows, and Reynolds-aver...
متن کاملTurbulent Flow over Cars
In this paper the flow behaviour over a number of car bodies is studied. For this purpose the unsteady 2-D incompressible Navier-Stokes equations have been applied. After averaging and nondimensionalizing the equations, the system of equations has been transformed from the Cartesian (x-y) coordinates to a body fitted generalized (-) coordinate. As the flow is incompressible, the density in the ...
متن کاملMultigrid analysis for the time dependent Stokes problem
Certain implicit time stepping procedures for the incompressible Stokes or Navier-Stokes equations lead to a singular-perturbed Stokes type problem at each type step. The paper presents a convergence analysis of a geometric multigrid solver for the system of linear algebraic equations resulting from the disretization of the problem using a finite element method. Several smoothing iterative meth...
متن کاملFirst-order System Least Squares for the Navier-stokes Equations
This paper develops a least-squares approach to the solution of the incompressible Navier-Stokes equations in primitive variables. As with our earlier work on Stokes equations, we recast the Navier-Stokes equations as a first-order system by introducing a velocity flux variable and associated curl and trace equations. We show that the resulting system is well-posed, and that an associated least...
متن کاملSolution of the Incompressible Navier-Stokes Equations in General Coordinates by Krylov Subspace and Multigrid Methods
In this paper three iterative methods are studied: preconditioned GMRES with ILU preconditioning, GMRESR with multigrid as inner loop and multigrid for the solution of the incompressible Navier-Stokes equations in general coordinates. Robustness and e ciency of the three methods are investigated and compared. Numerical results show that the second method is very promising.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007